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Abstract. Real Euclidean geometry is a basic mathematical dialect, not
only of high school students, but also of mechanical engineers, graphics
programmers, architects, surveyors, machinists, and many more. In this
paper, we present ”Geometry Expressions”: an interactive symbolic ge-
ometry package. The aim of the software is to generate algebraic formulas
from geometry. It is a further intention of the software that the model
should be entered interactively in a style which is convenient to both the
geometry consumer groups identified above.

1 Introduction

Interactive Geometry Systems and Computer Algebra Systems both have an es-
tablished place in education, the former more heavily at the high school level, the
latter at the college level. The importance of an interactive symbolic geometry
package is that it constitutes a bridge between these two areas of technology: ge-
ometry can be entered graphically, symbolic expressions output which may then
be transferred to an algebra system for further analysis. It is natural for both
consumer groups to merge geometric descriptions with algebraic: the tree that
casts a shadow has a height h, and the shadow a length s, a family of mechanical
parts is parameterized by exterior and interior diameters D, and d. The author
is not aware of any existing software which enables the convenient coexistence
of the symbolic with the geometric.

Previous work linking interactive geometry and algebra systems include The
Algebraic Geometer, Geometry Expert, paramGeo and Geother and GDI [1-
4]. The flavor of these systems is to use a link to an algebra system to prove
geometry theorems posed in a dynamical geometry context. Our focus, in con-
trast, is not on theorem proving per se, but on formula generation. A traditional
dynamic geometry system is not the best format for the user interface of a for-
mula generation package, as it does not provide particularly convenient ways to
attach symbolic inputs to a model. Quantities are typically derived from loca-
tions instead of the other way round. (Distances can, nevertheless, be specified
as parameters of translations, angles as parameters of rotations). A constraint
based model, however, allows such quantities as distances and angles to be spec-
ified directly. This is a much more natural style of user interface for a formula
generation package.
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Fig. 1. Oval of Cassini defined in terms of a pair of distance constraints

For example, Cassini Ovals are defined as the loci of points the product of
whose distance from two fixed points is constant. This is naturally expressed as
a pair of symbolic distance constraints from points whose location on a coordi-
nate plane have also been symbolically constrained (Fig. 1). Given these inputs,
Geometry Expressions can output the implicit equation of the resulting locus
as an expression whose coefficients depend on the undetermined symbols k, the
product of the lengths, and a, the absolute value of the x coordinates of the foci.

In this paper, we describe the overall architecture of Geometry Expressions,
detail some aspects of the system design, and illustrate through examples the
usage of the software.

2 System Architecture

The geometry engine in Geometry Expressions works in the following way [5]

1. A sketch of the geometry along with a set of symbolic constraints is entered
by the user.

2. Graph algorithms [6] are used to convert the constraint based description
into a sequence of elementary constructions.

3. The construction sequence is executed symbolically resulting in algebraic
expressions for the location of each of the geometric objects in the drawing.

4. Measurements made from the drawing are converted into algebraic expres-
sions involving the locations of the geometry objects. The expressions thus
obtained are simplified using standard techniques of computer algebra, along
with some geometry specific heuristics, and presented to the user.

For example, the drawing of a triangle constrained by two sides and the included
angle in (Fig. 2) is converted into this construction sequence:

1. Create a point A at arbitrary location.
2. Create a line AB through A with arbitrary direction.
3. Create a point B on line AB distance a from point A.
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b

Fig. 2. A geometric figure is specified by a sketch with symbolic constraints (algorithm
step 1)

A

B

C

⇒ u0+b·cos −θ+θ0 ,v0+b·sin −θ+θ0

⇒ u0,v0

⇒ u0+a·cos θ0 ,v0+a·sin θ0

θ

a

b

Fig. 3. Geometry Expressions computes symbolic locations for points in a constrained
triangle (algorithm step 3)

4. Create a line AC through A and with direction angle θ from line AB.
5. Create a point C on line AC distance b from point A.

Given this construction sequence, Geometry Expressions creates locations for
all the points (Fig. 3). Where there is any freedom in the model, Geometry
Expressions adds system-generated variables. For example, in fig. 3, the location
of A is arbitrary, and the system adds variables u0 and v0 as its coordinates. It
also adds the variable θ0 for the arbitrary direction AB.
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A

B

C

⇒ u0+b·cos −θ+θ0 ,v0+b·sin −θ+θ0

⇒ u0,v0

⇒ a2+b2−2·a·b·cos( θ)

⇒ u0+a·cos θ0 ,v0+a·sin θ0

θ

a

b

Fig. 4. Output measurements are computed and simplified (algorithm step 4)

When the user asks for a measurement from the drawing, the equivalent alge-
braic expression is evaluated, simplified and presented. For example, if he asks
for the distance between B and C, the distance formula is applied to the sym-
bolic expressions for the coordinates of A and B, simplified and displayed on the
diagram (fig. 4).

Within this overall architectural framework, there are a number of design
features which are essential to the practicality of the system. We will discuss the
following features:

– Intermediate variable retention
– Use of real witness values for variables
– Use of MathML to facilitate two way communication with algebra systems.

2.1 Intermediate Variable Retention

In a purely numerical system, the space and time requirements of the above
algorithm are linear in the number of primitive geometric entities. In a symbolic
implementation, however, the size of algebraic expressions grows exponentially in
the length of the construction sequence. The linear characteristics of the numer-
ical algorithm can be recaptured in the symbolic domain by creating geometric
intermediate variables and retaining them in the symbolic representation of the
model, and initially in the output measurements.

The user is able to control the display of intermediate variables, by specifying
whether they should be retained, and by setting a global granularity param-
eter. The system substitutes away intermediate variables whose definition is
deemed too simple (for example, an intermediate variable which is defined to
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u2
2+v2

2

u1=b·cos(θ)

v1=−b·sin(θ)

d1= v1
2+ −a+u1

2

d3= c+d+d1· c+d−d1· c−d+d1· −c+d+d1

d2=−c2+d2+d1
2

u2=u1−
d3·v1

2·d1
2 +

d2· a−u1

2·d1
2

v2=v1−
d2·v1

2·d1
2 −

d3· a−u1

2·d1
2

a

b

θ

d

c

Fig. 5. Distance AD with fine grained intermediate variables. The intermediate vari-
ables u1, v1, u2, v2, d1, d2, d3, are local to the expression and defined, ultimately, in
terms of the input variables a,b,c,d, θ.

be a constant would always be considered too simple to retain). The granular-
ity parameter controls the definition of ”too simple”. Figures 5 and 6 show the
same measurement with different settings for the granularity parameter. In Fig.
5, the parameter is set ”fine” with the result that more intermediate variables
are retained, but their definitions are simple. In Fig. 6, the granularity parame-
ter is set coarser with the result that fewer, but more complicated, intermediate
variables are present.

2.2 Witness Values for Variables

The definition of a problem in Geometry Expressions has two components. Al-
gebraically a problem comprises a set of constraints between entities. These
constraints correspond to symbolic expressions. In addition, the problem defini-
tion contains a sketch of the intended geometry. In general there may be more
than one solution to the set of equations corresponding to the constraints. The
sketch of the intended geometry is used to choose which solution to use.

In Fig. 7, for example, both triangles ABC and ADC are defined by the
same set of constraints (two sides and the non-included angle) however, because
ABC is sketched as an acute angle, and ADC is sketched as an obtuse angle,
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−d3·(a−b·cos(θ))

2·d1
2 −b·sin(θ)+

b· −c2+d2+d1
2 ·sin(θ)

2·d1
2
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+
(a−b·cos(θ ))· −c2+d2+d1

2

2·d1
2 +

b·d3·sin(θ)

2·d1
2 +b·cos(θ)

2

d1= a2+b2−2·a·b·cos( θ)

d3= c+d+d1· c+d−d1· c−d+d1· −c+d+d1

a

b

θ

d

c

Fig. 6. The same measurement as Fig. 5, but with a coarser setting to the intermediate
variable granularity parameter

Geometry Expressions has resolved B and D to different locations - and the
symbolic outputs for the lengths BC and DC are indeed different. To reiterate, in
terms of symbolic constraints (i.e. algebra) triangles ABC and ADC are defined
identically. It is the drawing (i.e. geometry) which leads the symbolic values of
BC and DC to differ.

Each solution to the symbolic constraint set represents a family of numerical
solutions. Geometry Expressions displays a representative member of the family.
In order to do this, it needs to substitute a real number for each of the input
variables. For example, in Fig. 7 AB and AD are both specified to have length
a. In order to draw a representative solution, the system needs a numeric value
for a. In theory, a could have any of a wide range of values, however in practice,
the user expects that the representative member of the solution family chosen
by the system should be fairly close to his original sketch.

We call the specific numeric value used in the sketch the witness value for
the variable. Geometry Expressions has a subsystem for deriving witness values
from the sketch, and maintaining witness values throughout its algebra system.
Constraints may be specified as expressions involving input variables (Fig. 1,
for example). To derive plausible witness values for these inputs, Geometry Ex-
pression uses a general purpose numeric root finder. In addition there is a user
interface subsystem which allows the user to explicitly set witness values, and
to control their behavior on dragging.

A further use of witness values for variables is to allow the automatic creation
of assumptions in order to simplify output expressions involving absolute values.
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D

C

A

B

⇒ a2−b2·sin(θ)2+b·cos(θ)

⇒ − a2−b2·sin(θ)2+b·cos(θ)

b

a

a

θ

Fig. 7. Triangle ABC is specified in terms of two sides and the non included angle.
There are of course two possible such triangles (ADC is the other one). The solution
branch which contains the witness triangle is selected by the application.
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Fig. 8. Paucellier’s linkage with the height of D displayed without invoking assumptions
based on witness values
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Fig. 9. The height of D simplified with explicit assumptions automatically supplied
based on witness values for a,b, and t

Geometry Expressions has both an implicit and an explicit assumptions mech-
anism. Implicit assumptions are derived from the knowledge that any variables
which are used to specify distances or radii must be positive. If the argument
of an absolute value can be deduced to be strictly positive or strictly negative
based on this information, then the absolute value can be simplified. Such im-
plicit assumptions are applied automatically.

Explicit assumptions may be applied at the user’s request. In this case, a
real numeric value for the argument of an absolute value is determined based on
witness values for any variables which are present. The absolute value is replaced
by its argument or by the negative of its argument depending on the sign of this
numeric value. An explicit assumption is added to the output expression.

Figures 8 and 9 both show models of Paucellier’s linkage. The design of this
linkage is such that varying the distance t between B and F should move D in
a horizontal straight line. In Fig. 8, the fact that the height of D is independent
of t is obscured by the absolute values. In Fig. 9, the addition of assumptions
based on witness values for the variables makes its independence of t clear.

2.3 MathML

Geometry Expressions has a special purpose algebra system built in, which is
responsible for maintaining and simplifying the expressions generated by the
geometric models. However it does not contain a full general purpose CAS.
Instead there is a capability for importing and exporting MathML. This allows
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the user to copy symbolic measurements from Geometry Expressions into the
algebra system of his choice, perform some analysis, then, if appropriate, paste
the results back into Geometry Expressions.

MathML Example. As an illustration of the use of Geometry Expressions in
conjunction with an algebra system, we describe an investigation of the location
of the cusps observed in the caustic formed by light from a finite point source
reflecting in a cylinder.

A

C

B

⇒

X=
2·a2·cos(t)3

1+2·a2+3·a·sin(t)

Y=
a·(2+3·a·sin(t)+a·sin(3·t))

2· 1+2·a2+3·a·sin(t)

(0,−a)

(0,0)

1
t

Fig. 10. Parametric equation of the envelope of the rays emanating from the point D
(0,-a) and reflected in the unit circle centered at the origin. The parameter t corresponds
to the direction AB.

To model this situation in Geometry Expressions (fig 10), we create a circle,
AB and an infinite line through B. We constrain the center of the circle to have
coordinates (0,0), and constrain its radius to be 1, and we constrain the line
through B to be tangential to the circle. We constrain the parametric location of
B on the circle to be t. This has the effect of setting the angle between AB and
the x axis to be t. We then create a point D and constrain its coordinates to be
(0,-a), create a line through D and B, and construct its reflection in the tangent
line. Finally we create the envelope of the reflected line as t varies between 0
and 2π.

Two cusps of the envelope curve clearly lie on the y axis and are obtained
when B is at parametric locations π

2 and −π
2 . Creating points on the envelope

curve at these parametric locations, we can observe that they do indeed lie at
the cusps. Geometry Expressions computes their coordinates.

The parametric location of the other cusps is not so obvious. To compute
these, we use the facility of copying and pasting to and from an algebra system
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F
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⇒ 0,
a

1+2·a

⇒ 0,
−a

−1+2·a 3·π
2

π
2

(0,−a)

t

Fig. 11. Coordinates for the points at parametric locations π
2 and −π

2 on the envelope
curve

(in this case Maple) via MathML. Copying the curve equation into Maple, we
differentiate and then solve for the derivatives being simultaneously 0.

x :=
2 cos(t)3a2

1 + 2a2 + 3 sin(t)a
(1)

y :=
1
2

(2 + 3 sin(t)a + sin(3t)a)a
1 + 2a2 + 3 sin(t)a

(2)

> solve({diff(x,t)=0,diff(y,t)=0},t);

{t = −π

2
}, {t =

π

2
}, {t = arctan(−a, RootOf( Z2 − 1 + a2))} (3)

> allvalues(t = arctan(-a,RootOf( Zˆ2-1+aˆ2)));

t = arctan(−a,
√

1 − a2), t = arctan(−a, −
√

1 − a2) (4)

Putting the arctan as the parameter value on a point on the curve, we can
have Geometry Expressions give the coordinates of the point (fig 12)

We notice in this example, the use of the two way communication between
Geometry Expressions and the algebra system. Curve equations generated from
the geometrical problem were exported to the algebra system in order to be
differentiated and solved to find cusp locations. Cusp locations were then copied
back into Geometry Expressions for further geometrical analysis. The two way
communication between these tools makes for a very productive learning and
research environment.



Geometry Expressions 199

E

A

C

B ⇒ 2·a2· 1−a2,a−2·a3

(0,−a)

(0,0)

arctan
−a

1−a2

t

Fig. 12. Coordinates of the cusp, whose parametric location on the envelope curve
corresponds to the solution found in Maple

3 Theorem Proving

The interactive nature of the use of Geometry Expressions makes it a useful tool
for the discovery as well as the automatic proof of theorems. We illustrate this
with an example involving mixtilinear incircles and excircles.

A mixtilinear incircle is tangent to 2 sides of a triangle and (internally) to the
circumcircle. A mixtilinear excircle is tangent to 2 sides of a triangle and (exter-
nally) to the circumcircle. We show that the ratio of the radii of the mixtilinear
excircles and the mixtilinear incircles satisfy an analogous relationship to that
between the incircle and excircles.

In Fig. 13, we have constrained a triangle by specifying its side lengths, and
created one mixtilinear incircle/excircle pair. Geometry Expressions computes
the radii of these circles in terms of the side lengths of the triangle. Observing a
degree of commonality between the radii, we display their ratio.

Observing that the ratio displayed has a numerator which is symmetric in
a,b,c we are led to consider the sum of the reciprocals of the 3 such ratios. That
is the sum of the mixtilinear incircle/excircle radii. Simple algebra leads to the
result that if r1, r2, r3 are the radii of the mixtilinear incircles, and if s1, s2, s3
are the radii of the mixtilinear excircles, then:

r0

s0
+

r1

s1
+

r2

s2
= 1 (5)

This is analogous to the relationship between the incircle radius and the excircle
radii [7]:

1
s0

+
1
s1

+
1
s2

=
1
r

(6)
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DA

B

G

E

z0 ⇒
−2· b· c· a+b−c· a−b+c· −a+b+c

a+b+c· a2−b2−2·b·c −c2

 | a<b+c

z5 ⇒ 2· b· c· (a+b+c)

3
2 · a+b−c· a−b+c· −a+b+c

a2−b2−2·b·c −c2 2

z5

z0
⇒

a+b+c
−a+b+c

 | a<b+c

a

b

c

Fig. 13. Expression for the coordinates of the center of the incircle in terms of the
coordinates of the triangle vertices

While we make no claims that this result is new in an absolute sense, it was
certainly new to us, and its ”discovery” facilitated by the formula generation ca-
pabilities of Geometry Expressions, working in collaboration with a little human
pattern matching.

B

D

C
A

⇒
x2· x0

2−2·x0·x1+x1
2+y0

2−2·y0·y1+y1
2+x1· x0

2−2·x0·x2+x2
2+y0

2−2·y0·y2+y2
2+x0·

x0
2−2·x0·x1+x1

2+y0
2−2·y0·y1+y1

2+ x0
2−2·x0·x2+x2

2+y0
2−2·y0·y2+y2

2+ x1
2−

x2,y2

x1,y1

x0,y0

Fig. 14. Expression for the coordinates of the center of the incircle in terms of the
coordinates of the triangle vertices
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4 Further Work

One shortcoming of the approach lies in the fact that the user only has an
opportunity to specify symbolic values for an independent set of constraints.
In some situations, the form of the symbolic output could be improved by the
addition of names for dependent quantities.

For example (Fig. 14), the coordinates of the incenter of a triangle expressed in
terms of the vertex coordinates are cumbersome expressions. However, a cursory
inspection shows that the terms under the roots are all the distance formula
for the lengths of the sides. The complexity of the expression could then be
significantly improved if the side lengths are named (Fig. 15).

A topic of further investigation is to extend the basic model so that the user
may specify a dependent set of geometric variables.

D

CA

B

⇒
a· x0+b· x1+c· x2

a+b+c
,

a· y0+b· y1+c· y2

a+b+c

x2, y2

x1, y1

x0, y0

c

b

a

Fig. 15. Expression for the coordinates of the center of the incircle in terms of the
coordinates of the triangle vertices and the side lengths

5 Conclusion

A constraint based interactive symbolic geometry system such as Geometry Ex-
pressions facilitates a collaborative approach to automated geometry. Collabora-
tion between geometry system and algebra system is enabled by MathML based
communication and illustrated by the light caustic example of fig. 10. In that
example, the geometry system was used to generate an equation for the caustic
curve. The algebra system was used to calculate the location of cusps, and those
locations fed back into the geometry system, which was used to display their
locus, and to derive the equation of the locus curve.

Collaboration between user and computer is illustrated in the mixtilinear incir-
cle/excircle example of fig.13. The computer is used to generate equations for cir-
cle radii in terms of triangle side lengths. Examination and manipulation of these
results by a human user leads to the ”discovery” of a theorem relating the radii.
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