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1 Introduction

Principles and Standards for School Mathematics (National Council of Teachers of

Mathematics [NCTM] 2000) advocates a unified approach to mathematics education

incorporating multiple strands in coherent focused elements. Special place in the NCTM

standards is provided for a reasoning and proof strand, emphasizing its place across the

mathematics curriculum:

‘‘Reasoning and proof are not special activities reserved for special times or special

topics in the curriculum but should be a natural, ongoing part of classroom discus-

sions, no matter what topic is being studied. In mathematically productive classroom

environments, students should expect to explain and justify their conclusions.’’

(NCTM 2000)

Dynamic Geometry software (Cabrilog 2007; Key Curriculum Press 2007) has facili-

tated an inductive approach to geometry. These technologies have been widely adopted in

the last 20 years and a vast amount of creativity has been brought to bear on applying it to

the educational process. (Kunkel et al. 2007; Scher et al. 2004; Gaulik 2002; King and

Schattschneider 1997). However, this technology is not without its shortcomings. First it is
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construction-based; geometric configurations which are easy to state declaratively must be

expressed in terms of sequential constructions. Whereas this action may provide an

intriguing intellectual challenge, it may also be a significant distraction from the task at

hand. Secondly, the existing software is numeric only, and does not have a convenient way

of interacting with Computer Algebra Systems (CAS). The dynamic geometry allows

students to discover results for themselves, formulate conjectures and intermediate results,

examine special cases, and generate new ideas (Scher 1999; De Villiers 1999, 2006),

however, it does not strongly promote the art of theorem proving.

Recently developed symbolic geometry software, such as Geometry Expressions (

http://geometryexpressions.com) allows geometric and algebraic representations to coexist

in the same model. Such software takes a geometric configuration and outputs algebraic

expressions for quantities measured from the model. (Todd 2007). A combination allowing

geometry to be modeled and expressed algebraically and then solved automatically in an

algebra system provides a powerful toolkit for taking the inductive exploration-based

approach facilitated by the original dynamic geometry systems to the next level, inte-

grating geometric and algebraic exploration for developing proofs.

2 Using Geometry Expressions

Geometry Expressions differs from traditional dynamic geometry software in two ways: it

is constraint based rather than construction based, and it is symbolic rather than numeric.

Use of Geometry Expressions tends to exhibit the following pattern:

(1) Geometry is sketched (incidence relationships between points and lines or circles are

inferred directly from the sketch)

(2) Constraints are added to the sketch: these can be qualitative, such as perpendicularity,

tangency, incidence, or quantitative, such as distance, angle, slope, coordinates.

Quantitative constraints may be specified numerically or symbolically.

(3) Measurements are made from the sketch. These measurements may be numeric or

symbolic.

As a simple example, let’s say we want to derive a formula for the altitude of a right

angled triangle. The first step is to sketch a triangle ABC and a segment BD joining one

vertex to the opposite side (Fig. 1a). A second step is to specify qualitative constraints, a

right angle at the vertex B and one at the foot of the segment BD (Fig. 1b). A third step is

to specify the lengths of the short sides of the triangle to be, symbolically, x and y (Fig. 1c).

The final step is to measure the symbolic length of the altitude. The software automatically

generates the expression for the length shown in Fig. 1d.

2.1 Invariance

Sometimes what is not there is more important than what is there. In mathematics, the

absence of a variable in an expression points to invariance, and the invariance may have a

role in proof. As an example, consider a parabola y = x2. Place points at x-h, x, and

x ? h. Join them up to form a triangle and display its area (Fig. 2).

Notice that the area contains h, but does not contain x. Hence the area of the triangle

depends on its width, but not its location. Of course, this statement relies on the symbolic

geometry system to give the area of the triangle. A display of coordinates of triangle
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vertices along with the median from C to AB gives a clear path to a proof of the triangle

area (Fig. 3).

Comparing the x-coordinates of point E with points A and B students can see that point

E is a midpoint of the segment AB. This statement then can be verified by using the y-

coordinates of the three points showing that
ðx�hÞ2þðxþhÞ2

2
¼ x2 þ h2. Then the length of CE

is easily determined as yE-yC = x2 ? h2-x2 = h2. The area of triangle ABC can be found

as the sum of the areas of triangles ACE and BCE. The software will show that each

triangle has area of h3

2
. The next step is to determine where this expression came from.
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Fig. 1 Four steps in a typical usage of Geometry Expressions: a Sketch the geometry, D incident to AC
implied from the sketch, b add qualitative constraints: AB perpendicular to BC and BD perpendicular AC,
c add symbolic quantitative constraints: AB has length x and BC has length y, d measure the symbolic length
of BD
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Fig. 2 Area under a chord of a parabola
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Assuming that CE is the base of triangle ACE we can find the altitude from A onto CE,

which is given by the software as h. That is easily explained as difference in x-coordinates

between points A and C (Fig. 4). The area of triangle BCE can be proved in the same way.

Thus, we have proved that area of triangle ABC is h3 and does not depend on position of

point C.

The invariance of this triangle can be used, in a method which dates back to Archi-

medes, to derive an expression for the area under a chord of a parabola (Baki 2005).
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Fig. 3 E is the midpoint of AB. CE is a median of the triangle and has length h2. CEB and CEA both have
altitude h. These facts can be use to determine that the area of ABC is h3
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Fig. 4 Finding a path to proving area of the areas of triangles ACE and BCE. The abscissa of each point is
constrained by defining its x-coordinate relative to the origin (0, 0). This constraint is indicated by the blue
lines and arrows on the diagram. For example, the abscissa of the point C is defined as x, of the point B as
x ? h and of the point A as x-h. The calculations assume that h [ 0, and this assumption is displayed as
Geometry Expressions calculates the horizontal distance between points A and C, and points C and B
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2.2 Algebra ? Geometry = Proof

Pythagorean triangles are right angled triangles with integer side lengths. If you create a

specific Pythagorean triangle in Geometry Expressions, and construct its incircle, you may

notice that the incircle radius is integer (Fig. 5). Can we prove that this is true in general?

With our symbolic geometry system, we can derive an expression for the radius of the

incircle for a general right angled triangle (Fig. 6).

It is not immediately obvious that the radius is an integer if the side lengths are integers.

However, we can rationalize the denominator as follows:

ab

aþ bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p � aþ b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

aþ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p ¼

ab aþ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

� �

ðaþ bÞ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p 2

¼
ab aþ b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

� �

a2 þ b2 þ 2ab� ða2 þ b2Þ ¼
aþ b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

2

Not quite an integer, but close. Assuming that our triangle is Pythagorean then a, b and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

are all integers. Can we show that aþ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

has to be even?

We can look at three cases: a and b both even, both odd and one odd and one even.

• If a and b are both odd,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

is even, hence aþ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

is even.

• If a and b are both even, then
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

is even, hence aþ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

is even.

• If a is even and b odd or a is odd and b even, then
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

is odd, hence aþ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

is even.

Having used a combination of symbolic geometry and algebra to prove our result, we

can look for a more traditional geometric proof. If we specify the radius of the incircle to

be r, Geometry Expressions forces us to remove one of the existing constraints in order that

all constraints remain independent. Adding points incident to the circle and to the sides of

the triangle (Fig. 7), we can examine the distances from these points of contact to the
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Fig. 5 Incircles of Pythagorean triangles appear to have integer radii
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Fig. 6 Incircle radius for the
general right angled triangle
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vertices of the triangle. Equating the sum of the two distances making up the hypotenuse

with its length determined by the Pathagorean Theorem, we obtain:

a� r þ b� r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

;

which can be solved for r to yield.

r ¼ aþ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

2

3 Proof in Practice

In the summer of 2006, Saltire Software hosted a pair of high school student interns, under

the Portland Saturday Academy’s Apprenticeship in Science and Engineering program.

Part of the program involved their attempting to discover mathematics for themselves

using the combination of Geometry Expressions and a CAS.

Walker was going into his senior year at Lake Oswego High School. He decided to

investigate the behavior of the circumcircle of a triangle in the limit as the points defining

the triangle coalesced. His results on this and a variety of related problems may be viewed

at (Ray 2006). His modus operandi was interesting from the point of view of this paper. He

would set up specific sample problems in Geometry Expressions, derive equations which

he could copy into his CAS, then take a limit in the CAS. He was then able to generalize

from these specific examples to general solutions, which he would solve by hand. His final

result was a collection of traditional mathematical proofs without reference to the tech-

nology, although the technology had been critical to his developing an understanding of the

problem and to his development of proof paths.

In his work, he used three different levels of confidence in a result:

(1) Numerical evidence of the form derived by direct manipulation of the geometry and

examination of numerical quantities

(2) Machine proof, derived by manipulation of symbolic geometry results in a CAS
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Fig. 7 Distance of points of tangency of the incircle from vertices
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(3) Mathematical proof absent any technological aid.

Interestingly, he was not satisfied to rest at step 1 or 2, and found a result to be less than

thoroughly proved if he did not accomplish step 3.

As an example of this process, we examine Walker’s discovery and proof process for

the limit of the circumcircle as two points coalesced. First, by dragging a numerical model,

he was able to convince himself that the limit circle depended on the path along which the

points coalesced. In fact he was able to formulate a hypothesis that the limit circle was

tangent to the curve along which the points coalesced. His second step was to verify this

result symbolically for some specific trajectories using Geometry Expressions to generate

the equation of the circumcircle at a generic point on the trajectory and using Maple to take

the limit. His third step was to move to pencil and paper to prove the general result. While

the technology aided his thinking along the way, his final proof was a self contained piece

of mathematics (Fig. 8).
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We start by examining the limit of the circumradius of a triangle as two of the vertices coalesce. To define the 
radius of the limit circle, we examine the behavior of the circle as vertices B and C approach one another along 
some path. 

Using the Law of Sines, we know that the circumradius R of triangle ABC with sides a, b, and c opposite the 

angles A, B, and C is
)sin(2 A

a
R = . When vertices B and C coalesce, side a and angle A collapse.  

Let the location of B lie on the parametric curve (xB(t), yB(t)), and point C lie on the parametric curve (xC(t), 
yC(t)), and let the two points coalesce at t=0.  i.e. (xB(0), yB(0))= (xC(0), yC(0)) 

We can define side a and angle A as the two functions a(t) and A(t), such that a(0)=0 and A(0)=0. We take the   
limit of R as t approaches 0: 

0/0)
))(sin(2
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0
=

→ tA
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t

Apply l’Hopital’s rule to find the limit radius: 
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If both derivatives are equal to 0, we can apply lHopital’s rule repeatedly.

Fig. 8 Walker’s Proof of the circumcircle limit where two points merge
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4 Conclusion

A mathematician working on a proof has a fully stocked armory of tricks, of known results

and of general techniques to bring to bear on a problem. One strong usage of a symbolic

geometry system in teaching proof is as a conjecture creation assistant (whose conjectures

happen to be correct!). The tool can help the student break a problem into tractable parts.

Traditional numerical dynamical geometry systems are useful in conjecture formula-

tion. However, the range of conjectures which they support is limited. In such a system,

equality of two measurements or direct proportion may readily be discovered, more

complicated dependencies are harder to detect. By contrast, a symbolic geometry system

gives an algebraic form of the dependency directly, and so arbitrarily complicated inter-

mediate results may be formulated. For example, in our first problem, a median was added

to a triangle whose area was under investigation. Displaying symbolic expressions for the

length of the median along with coordinates of the triangle vertices and the foot of the

median led to a proof path. This process of backward planning is characteristic of the use

of a symbolic geometry system in proof. We start with the answer, then look for related

results which, when taken as given yield the answer. We now can look to prove the related

results, which if we are lucky, may be easier.

While symbolic geometry measurements can be used in formulating purely geometrical

proofs, they can also be used as the bridge between the components of a hybrid geometric/

algebraic proof. For example, when proving that the incircle of a Pythagorean triangle has

integer radius, the expression for the radius is taken as given by the symbolic geometry

system, and further algebraic manipulation performed to prove that it is an integer. Again

the form of the symbolic expression pointed to a potential proof path. While a numeric

dynamic geometry system could be used to form a conjecture in this example, it would

give little help in finding a proof path.

At first glance, it might seem that a tool which creates algebra from geometry merely

gives the game away. Closer experience with the tool, however, suggests that in providing

a method of automatically generating intermediate results, the software can help with the

strategic planning of a proof, and thus make the student more independent of teacher

provided hints. Along with independence, the student may gain ownership of the problem

and its solution along with motivation to push through to a fully realized mathematical

proof.
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