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Abstract 
Using symbolic geometry and CAS facilitates a new kind of geometric discovery. 
Rather than relying on geometric insight to solve a problem, it can be expressed 
algebraically using the symbolic geometry system then solved in the CAS.  The 
solution can then be examined geometrically in the symbolic geometry system and 
insight attained after the fact.  We illustrate this approach with a number of 
examples from students’ work over the last decade. 

1. Introduction
The thing which makes geometry so appealing is that sometimes cleverness can yield simple 
solutions to complicated problems.  This can also make geometry frustrating on the occasions when 
the cleverness eludes us.  
Symbolic geometry software, such as Geometry Expressions facilitates the creation of mathematical 
models and the expression of the geometry as algebra (or trigonometry).  The algebraic form may 
be solved using standard approaches or copied into a CAS and simple operations applied to work to 
a solution.  The solution may in turn be copied back into the symbolic geometry system and 
analysed.  Examination of the solution obtained in this manner can yield geometric insight which 
can lead to more succinct, simpler proofs.  This yields a fundamentally new approach to solving 
geometry problems, which allows the insight to come after the problem is solved.  In this way, 
progress can be made, even without the insight.   
In this talk we present a number of geometry problems whose analysis yielded geometric insight in 
just this way.  Many of these problems arose during summer mathematics projects undertaken by 
students at the Portland Saturday Academy over the course of the last 10 years. 
The more engaging student projects involved the analysis of real-world problems, the formulation 
of tractable mathematical models, and solution of the mathematical problem posed by the model.  
We give examples of mathematics motivated by application domains from design of solar cookers 
to telescope aberration.  We highlight the formulation of mathematical problems from application 
domains as a highly creative mathematical activity and one to which the student is traditionally not 
exposed. 

Saturday Academy 
Most of the projects described below were undertaken by students in the Portland Saturday 
Academy Apprenticeship in Science and Engineering (ASE) program [1].  Under this program, high 
school students (typically at the end of year 10 or 11) work during the summer for 8 weeks as 
interns at local engineering or scientific labs.  The students are typically of the highest caliber, as 
the main motivation for participating is to boost their chances of being admitted to exclusive 
universities.  Saltire Software has participated in the program since 2006.   

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

10



A major component of the work done by Saltire’s interns has been a substantial mathematical 
research project.  The student is given technology:  Geometry Expressions for modeling, Maple and 
Mathematica for solving and graphing.  They select an open ended research topic, and with 
guidance from their mentor (this paper’s author) develop the questions they wish to address, create 
mathematical models and attain some sort of answers to their questions.  Typically these research 
projects account for about half of their time spent as an intern, approximately 160 hours of work. 

2. An Inscribable Circumscribable Pentagon
A problem which nicely illustrates the style of geometrical discovery described in this paper was 
posed to the author at the 2006 ACTM conference. 

Find a pentagon, other than the regular pentagon which is both inscribable and 
circumscribable.   

That is, find a pentagon whose vertices lie on a circle, and whose edges are tangential to another 
circle. 

Figure 1: An axisymmetric circumscribable pentagon, b is the parallel distance between BD and 
EF. The inner circle is tangent to EF, BF and BC.  Displayed is the distance between the circle’s 

centre and the axis of symmetry. 

There are, of course, many such pentagons and we are asked to find only one, so we can make 
choices to simplify the problem.  We choose to look for an axisymmetric pentagon where the edge 
perpendicular to the axis is half way between the centre and the circumference.  Let A be a point on 
the circumference of a circle centred at O of unit radius.  Let CD be perpendicular to AO at a 
distance ½ from O, let BE be parallel to CD and at a distance b (figure 1).  We now create a circle 
tangent to AB, BC and CD.  For the pentagon to be inscribable, this circle must also be tangential to 
AE and DE, and hence by the symmetry of the drawing, its centre F must lie on OA.   
In Figure 1, we see the algebraic output from Geometry Expressions for the distance between F and 
the axis of symmetry OA.  Copying this result into Maple we can find a value of b which makes it 
identically zero (figure 2). 
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Figure 2: Maple solution of the equation from figure 1. 

Having found a solution, we notice that the angle 
9

4π appears in the equation.  This suggests that 

perhaps the solution is related to the regular nonagon.  In fact, we find that the solution can be 
constructed from edges and diagonals of the regular nonagon as shown in figure 3.  At this point, 
we can use elementary geometry to prove that the pentagon so described is inscribable [2]. 

Figure 3: Inscribable pentagon inside a regular nonagon 

While this example was not done by one of our Saturday Academy students it admirably illustrates 
the solve first – enlightenment later approach.  A rather ugly solution using Geometry Expressions 
and Maple led to a geometric characterization in terms of the regular nonagon.  At this point an 
elegant geometric solution was attainable.  

3. Limiting forms of Triangle Defined Circles
The problem which our first ASE student selected to address was this: 

What happens, in the limit, to the circumcircle of a triangle when the three points coalesce? 
By numerical experimentation with Geometry Expressions, the student convinced himself that the 
answer to the question depended on the path along which the points coalesced. 
If the triangle had vertices ABC, he reasoned that one could apply transformations to keep A fixed, 
then the paths of B and C would form two arms of a curve which meet at A.  He was able to prove 
that the circumcircle tended to 0 unless that curve was sufficiently smooth at A.  In the case where it 
was smooth, he used Maple to find the radius of the limit circle.  He was able to confirm that this 
was the radius of curvature of the curve (figure 4). 
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Figure 4 (a) Circumcircle of points at parametric locations t-h, t, t+h on curve (f(t),g(t)) along with 
expression for the radius. (b) Limit of the radius as h→0 computed in Maple. 

Having turned the original question into a more tractable mathematical formulation, and 
successfully analyzed this using symbolic geometry and CAS, the student proceeded to apply the 
same technique to a number of other circles defined by triangles which he encountered on the web 
[3].  For example, his analysis of the limit of the 9-point circle is shown in Figure 5.  Comparison of 
this limit with that of figure 1 reveals that the limiting radius of the 9 point circle is half the radius 
of curvature of the curve. 

> limit(%,h=0,right);

- 
D f( ) t( )2 + D g( ) t( )2( )

/3 2( )

-D 2( ) g( ) t( ) D f( ) t( ) + D g( ) t( ) D 2( ) f( ) t( )
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Figure 5: (a) Geometry Expressions Model of the 9 point Circle radius. (b) limit of this radius as 
h→0 computed in Maple. 

The student found definitions of many more triangle circles online [3], and expanded his 
investigation to 50 such circles.  Of these 50 he found 20 tended to zero radius and 2 to infinite 
radius, while 22 tended to a radius which is a constant multiple of the radius of curvature, and 6 
tended to some other radius (figure 6). 

Figure 6: A number of different triangle defined circles and their limiting forms 

> limit(%,h=0,right);

- 
D f( ) t( )2 + D g( ) t( )2( )

/3 2( )

-2 D 2( ) g( ) t( ) D f( ) t( ) + 2 D g( ) t( ) D 2( ) f( ) t( )
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4. Telescope Aberration
An article in Mathematics Teacher on telescope optics [4] was the starting point of the second 
year’s investigation.  The article described how incoming light parallel to the axis of a parabolic 
reflector would all converge once reflected on the focus of the parabola.  Incoming light at an angle 
to the axis was discussed and in relation to this, two terms were used without definition: “optical 
focus” of the reflected light, and the “focal surface” of the parabola. 

Figure 7: Model of the “optical focus” or region of concentration of reflected light for incident rays 
at angle θ to the axis. 

The optical focus defined the location where parallel rays at a specific angle to the axis converge.  
As they do not in general all intersect at a point, there is a need to come up with a definition of the 
point of convergence. 
The optical surface is then the locus of these convergence zones for a range of incoming angles. 
We asked the additional question: can we define, geometrically, the aberration: loosely the width of 
the convergence zone.  Aberration should be zero for light entering parallel to the axis and, one 
would assume, increase as the angle of the incoming light increases. 
Figure 7 shows a Geometry Expressions model of the region of concentration of incident rays at 
angle θ to the axis of the parabola.  It is bounded on the left by the reflections of light which 
impinges on the edge of the mirror and on the right by the envelope of the reflected rays.  This 
envelope may be thought of as the locus of the intersections of the reflected images of 
“neighboring” rays, where “neighboring” is to be interpreted as a limit of ray pairs with finite 
separation.  The edges of the mirror are defined to lie at parametric location u and -u on the 
parabola.  (Assuming the mirror has its center at the origin, and its axis aligned with the y axis, and 
that its focal length is f, then the coordinates of the edge points are ( )2,2 fufu ).
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Figure 8: (a) Loci of points A and B are circles passing through the focus F. (b) Both circles pass 
through the focus.  One is tangent to the parabola’s vertex, the other passes through the edges of 

the parabola. 
Point B on the diagram is the intersection of the reflected rays from the edge of the mirror, while 
point A is the point on the envelope curve whose tangent is the ray reflected from the center of the 
mirror.  Alternatively, this can be thought of as the intersection of the reflection of “neighboring” 
rays which hit the center of the mirror.  The length of the line joining A and B gives a measure of 
the width of the area of concentration of the light and thus defines, in some sense, the aberration.  
We can observe that AB is angle θ below the horizontal and that AB extended passes through the 
focus.  
The locus of A and B can be computed by Geometry Expressions and their implicit equations 
calculated (figure 8).  Inspection shows these to be circles, one being the circle through the focus 
which is tangent to the parabola at its vertex, the other being the circle through the focus and the 
two edges of the mirror. 
The aberration can thus be defined geometrically as follows (figure 9).  Given a parabolic mirror 
with focal point F, vertex V and edges C and D,  draw the circumcircle of C, D and F and the circle 
with diameter FV.  Draw a line through F parallel to the incident rays and reflect it in a line through 
F at 45 degrees to the axis FV.  The intersections between this line and the two circles mark the 
boundaries A,B of the concentration of the reflected rays and the length |AB| represents the 
aberration. 

Figure 9: Geometrical method of determining the aberration in a parabolic mirror. 
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The student reasoned that any point on the segment AB could be used as the “optical focus” and any 
circle between the two circles could represent the “focal surface”. 
The student extended his investigation to consider a non-parabolic mirror.  In generalizing the 
results he faced the problem that the two circles used in describing the parabolic mirror both 
incorporate the parabola focus in their definition, but the general curve does not have such a focus.  
He also recognized that his inner curve is the limiting form of the outer curve as the points C and D 
converge on V.  His outer curve does not depend on the fact that the mirror is a parabola, but merely 
on the direction of the tangents to the mirror at C and D. 
To analyze the general case, he took a triangle ABC and a pair of parallel rays touching AB at A 
and BC at C.  He reflected those rays in AB and BC.  He determined and proved, using elementary 
geometry, that if D is the circumcenter of ABC, then the locus of the intersection of the reflected 
rays is the circumcircle of ACD (figure 10). 

Figure 10 (a) Images of two parallel rays reflected in AB and CB meet at a constant angle. (b) The 
locus of the intersection points is the circumcircle of A, C and D the center of the circumcircle of 

ABC. 
Finally, and surprisingly, he ended up using the approach of the previous year’s student to 
determine the limit of this circle as A and C tend to B. (figure 11).  He determined the limit circle 
has a radius one quarter of the radius of curvature. 
To confirm that the circles for the general curve corresponded to the circles through the focus of the 
parabola, the student considered the situation where A and B in figure 10(a) lie on a parabola, and 
where AB and CB are tangents to the parabola.  He then considered the case where the rays incident 
to A and C are parallel to the axis of the parabola.  In this case, the focal property of the parabola 
demands that the reflected rays intersect at the parabola’s focus.  Hence the parabola’s focus does 
indeed lie on the circumcircle of A C and D in figure 10b.  
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Figure 11: Limit of the locus circle 

5. Solar Cookers
In the third summer, we stayed on the topic of reflectors, but in the context of solar cookers.  The 
project we identified was to characterize the sensitivity of different shapes of reflectors to errors in 
alignment with incoming light.  While irrelevant to computer targeted reflectors in solar power 
stations, such sensitivity would be important to hand deployed solar cookers in the third world. 
A parabolic reflector aligned perfectly with incoming light concentrates all the light on the focal 
point and thus is able to achieve an infinite solar concentration ratio.  Conversely, if it is not aligned 
exactly with incoming light, all reflected rays miss the focus.  In practice, however, a finite sized 
target is positioned at the focus. This yields a finite solar concentration ratio (the cross sectional 
area of the reflector divided by the area of the target) and a finite sensitivity to misalignment. 
A survey of solar cooker designs on the web revealed that parabolas of a variety of different focal 
lengths are in use.  Of course, the focal length does not affect the parabola’s capability of focussing 
when perfectly aligned with the incoming light.  A question we asked was this: 

For a given cross section, what focal length is least sensitive to misalignment. 
To model such a cooker, the student created a parabola whose vertex lay at the origin and whose 
focus was on the y axis.  She constrained the distance between the focus and the vertex to be f. She 
centred a circular target of radius r at the focus and considered a finite portion of the parabola 

> limit(%,h=0,right);

D f( ) t( )2 + D g( ) t( )2( )
/3 2( )

4 D f( ) t( ) D 2( ) g( ) t( ) - 4 D 2( ) f( ) t( ) D g( ) t( )
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bounded by vertical lines distance d/2 from the y axis.  With d and r considered as constants, the 

solar concentration ratio when adequately aligned was 
2

2








r
d .  She decided that her measure of

sensitivity to misalignment would be the angle at which light reflected from the edge of the mirror 
started to miss the target.  To find this angle, she created a line through the edge of the mirror and 
tangent to the target circle.  She then reflected this line in the tangent to the parabola at the mirror’s 
edge and measured the angle of the reflection to the vertical (figure 12).   

Figure 12: Solar cooker model with target of radius r and reflector of cross sectional diameter d.  
Focal length is f. 

The least sensitive cooker would be the one whose focal length f maximizes this angle.  The student 
copied the expression into Maple, differentiated and solved to get the result shown in figure 13. 

Figure 13: f value which maximizes the critical angle 

This seemed remarkably simple, and when entered into the Geometry Expressions model the 
algebraic simplicity corresponded to geometric simplicity (figure 14).  The focal length was such 
that the focus was aligned horizontally with the edges of the reflector. 
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


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arctan 16 r f
 +  +  − d4 32 f2 d2 256 f4 256 r2 f2

> simplify(diff(%,f));
16 ( ) − d2 16 f2 r

( ) + d2 16 f2  +  +  − d4 32 f2 d2 256 f4 256 r2 f2

> solve(%=0,f);

,d
4 −

d
4
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Figure 14 Geometry of the configuration which maximizes the critical angle. 

The geometry of the solution, found by calculus led to a much more succinct solution of the original 
problem.  If D is the edge of the reflecting surface, we draw lines from D tangential to the target and 
reflect these in the parabola at D (figure 15).  The angle between the reflected rays is the critical 
angle which defines the tolerance of the cooker to misalignment.  Clearly this is the same as the 
angle between the two tangents from D to the target.  However, this last angle is just the apparent 
size of the target viewed from D.  Clearly the apparent size is maximal when D is as close as 
possible to the target.  As D can be located anywhere on the vertical line, it is closest to the target 
when D is horizontally aligned with B. 

Figure15: The critical angle is the same as the apparent (angular) size of the target viewed from D. 
The angular size of the target is biggest when D is as close as possible. 

5. Cusps on Circle Caustics
The circle caustic is the curve formed by the concentration of light reflected in a circle (figure 16). 
This is frequently referred to as the “coffee cup caustic”.  When the light source is at infinity, the 
shape of the caustic is a nephroid, and when the light source is at the circumference of the circle, it 
is a cardioid.  We are interested in the situation where the light source is inside the cylinder, and in 
particular we want to determine the location of the cusps [6]. 

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

20



Figure 16: Caustic curve formed by light reflected in a perspex cylinder. 

Mathematically, the caustic is the envelope of the reflected  rays.  The envelope may conveniently 
be modelled in Geometry Expressions (fig 17), and the equation of the curve derived. 

Figure 17: Geometry Expressions model of the circle caustic. Line CB is reflected in the tangent to 
the circle at point B. The envelope of the reflected lines as B traverses the circle is displayed.  Point 

D is placed at parametric location 
2
π on the envelope. 

In general there are four cusps.  Two are on the axis of symmetry, corresponding to B at parametric 

locations  
2
π  and 

2
3π  on the circle.  Their location can readily be found by placing a point on the 

envelope at those parametric locations.  The cusp at parametric location 
2
π  is shown in figure 17. 

To locate the off-axis cusps, we look for points where the tangent to the curve is not well defined.  

Such a point is where both  
dt
dx  and 

dt
dy vanish.  Figure 18 shows this computation in Maple.
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Figure 18: Maple computation for cusp location 

The results can be copied back into Geometry Expressions (Figure 19).  Let point E lie at 

parametric location )arctan(
22 ar

a
−

−  on the circle, and point F at the same parametric location on 

the envelope curve.  Point F lies at the cusp.  We can observe and confirm geometrically that: 

1. CE is horizontal

2. F is the image of C under reflection in AE.

Figure 19: Location of the off-axis cusp and corresponding incident and reflected rays 

Again, our symbolic solution yields simple geometry.  An intuitive geometric argument for this 
location of the cusp considers the reflection C’ of C in the line AG where G lies at general location 
on the curve (figure 20).  The locus of C’ is a circle through C centred at A.  C also lies on the 
reflection of CG in the circle, though not necessarily on the envelope.  In fact the caustic is inside 
the locus of C’ part of the time and outside part of the time, with the division between inside and 
outside happening at the cusp, just when GC’ is tangent to the locus of C’.  (Another way of 

x := 
2 cos t( )3 r a 2

2 a 2 + r 2 + 3 sin t( ) r a

y := 2 r + 3 sin t( ) a + sin 3 t( ) a( ) r a

2 2 a 2 + r 2 + 3 sin t( ) r a( )

> solve({diff(x,t)=0,diff(y,t)=0},t);

t = - 1
2

 p
ì
í
î

ü
ý
þ

, t = 1
2

 p
ì
í
î

ü
ý
þ

, t = arctan - a
r

, 
RootOf a 2 - r 2 + _Z 2, label = _L2( )

r
æ
ç
è

ö
÷
ø

ì
ï
í
ï
î

ü
ï
ý
ï
þ

> allvalues(arctan(-a/r, RootOf(a^2-r^2+_Z^2, label = _L2)/r));

arctan - a
r

, 
-a 2 + r 2

r

æ
ç
ç
è

ö
÷
÷
ø

, arctan - a
r

, - 
-a 2 + r 2

r

æ
ç
ç
è

ö
÷
÷
ø

Proceedings of the 20th Asian Technology Conference in Mathematics (Leshan, China, 2015)

22



thinking of this is that this is the instant when the reflected ray is stationary, as C’ is moving along 
the direction of the ray).  By symmetry, if GC’ is tangent to the circle centred at A through C then 
GC is also tangent, and angle ACG is right. 

Figure 20: C’ is the reflection of C in AG. It lies on the circle centered at A through C and on the 
reflection of the line CG. 

6. Conclusion
Creating a tractable mathematical model of a real life problem is difficult.  The mathematical model 
is an idealization of the real life problem such that it can be analysed and solved with the tools at 
hand.  Giving a student a sophisticated mathematics environment such as Maple or Mathematica 
greatly extends the class of mathematical models which can successfully be analysed, and hence 
makes the modelling task easier.  For the modelling itself to be done by students a symbolic 
geometry system such as Geometry Expressions, which converts a graphically expressed model into 
explicit mathematics has proven important.  Solvability of the mathematical model frequently is 
dependent on both its geometrical expression and the parametrization used.  The capability of 
reliably converting a geometrical expression of a problem into symbolic mathematics allows the 
student confidently to create multiple models.   The automation of solution through a CAS can lead 
to a rapid cycle round the model / solve loop. 
The general approach used with the students was to acquire a mathematical model using Geometry 
Expressions, to extract some measurement from the Geometry Expressions mode, expressed as a 
mathematical expression, and then to use a CAS to find a limit of this expression, to solve for this 
expression, or to optimize this expression by differentiating and solving.   
Mathematisation of a real life problem came in three steps.   

1. A simplified geometric model was created, a good example being to model a kettle
positioned at the focus of a parabolic solar cooker as simply a finite radius circle.

2. An appropriate parametrization was applied to the model: in the solar cooker example, the
parabola is parametrized by its focal length f – treated as a variable in the problem, and the
diameter of its dish d – treated as a constant.

3. A measurement made from the model and treated as an objective function of the variable
parameter(s).
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At this point the number of different mathematical approached which were deployed in the CAS 
were quite small and only a handful of CAS functions were deployed. 
Having found a solution by brute force application of automated geometry modelling and CAS 
solution, viewing the solution back in the geometrical realm frequently yielded additional insight 
and indeed suggested purely geometrical solutions to the original problem.  These solutions 
replaced the heavy algebraic machinery provided by the CAS with more elementary, but less direct 
geometric arguments.  The technology gives the student the means to make progress with a problem 
while waiting for inspiration to strike.  With a solution in hand, inspiration seems to strike more 
frequently. 
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