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Interactive geometry software has features for facilitating discovery based learning.  It 

has been widely adopted in the last twenty years and a vast amount of creativity has been brought 

to bear on applying it to the educational process [1,2].  This is not to say that it is without its 

limitations.  

Interactive geometry systems are constructive rather than constraint based. In a 

construction based system, for example, to create an incircle of a triangle, one constructs first the 

intersection of the angle bisectors, then the perpendicular from one side through this point, then 

the circle centered at the intersection point whose circumference goes through the foot of the 

perpendicular.  In a constraint based system, by contrast, one sketches a circle inside the triangle, 

then constrains the circle to be tangent to each side of the triangle. A construction based system 

models the process of geometry as practiced a couple of millennia ago by the ancient Greeks, 

whereas a constraint based system models the process of geometry practiced nowadays in 

Computer Aided Design systems.  Further, interactive geometry programs are purely numeric and 

thus are limited in their ability to reinforce the important connections between geometry and 

algebra.  In this paper, we briefly describe the features of an interactive symbolic geometry 

system which addresses both these limitations and provides an interesting complement to existing 

DGS programs.   
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Geometry in a classroom of the future 

Constraint based symbolic geometry software should make an impact on mathematics 

education in the next 20 years.  At the time of writing, although symbolic geometry software 

exists [3] it has not been deployed long enough for a significant body of knowledge to have 

amassed on how to use it in a classroom setting.  With the reader’s indulgence, then, we are going 

to embark on a little time travel into a high school of the future, let’s say 2016.  (We note again 

that although our imaginary high school is in the future, the software illustrated exists today.  

Specifically, the models described in this article were created using the symbolic geometry 

program Geometry Expressions [3].  We further assume that the students of the future will have 

access to Computer Algebra Systems (CAS) in much the same way that the students of today 

have access to graphing calculators.  We have used Maple [4] as our CAS.) 

Our first stop will be a sophomore class.  The students all have computers:  some are 

laptops, some tablets, some look like calculators.  All have symbolic geometry software and CAS.  

They are investigating relationships between the radii of incircles and excircles of a triangle.  As 

a warm up, they create a formula for the area of a triangle.  The students first sketch a triangle 

ABC, then add length constraints to each side, specifying that AB is length c, BC is length a, and 

AC is length b.  They select the triangle and create a polygon, then request the software to display 

the area of the polygon.  Their symbolic geometry program automatically creates the expression 

for the area shown in Fig 1. (The shaded red pentagon is an icon representing the fact that the 

quantity displayed is an area). 
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Figure 1:”Geometry Expressions” computes a formula for the area of a triangle given the length 

of three sides 

Ms. Johnson informs her class that this beautiful formula is due to Heron of Alexandria,  

and frequently appears in textbooks in the form: 

))()(( csbsass    where  
2

cba
s


      (1) 

She asks the class to verify that (1) is indeed equivalent to the equation generated by their 

symbolic geometry system. 

They have Heron’s formula now in two different formats, but how could they prove it?   

Ms. Johnson prompts her class to constrain a triangle in terms of the altitude and the two non base 

sides (fig. 2), and then to show the formula for the length of the base. 
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Figure 2:Length of the base in terms of the other sides of the triangle and its altitude 
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The class can easily see how they could have derived this expression using Pythagoras’ 

Theorem.  They agree that if they equate this quantity with b, then solve for x they will have a 

formula for the altitude in terms of the side lengths.  Strategically, they have finished the 

problem.  The only issue is the matter of solving the equation.  They entrust this to an algebra 

system  

>> solve(sqrt(a^2-x^2)+sqrt(c^2-x^2)=b,x); 

    2 a2 b2 a4 c4 2 c2 a2 2 c2 b2 b4

2 b
,


    2 a2 b2 a4 c4 2 c2 a2 2 c2 b2 b4

2 b  

Two solutions, but the second is negative.  The expression under the square root is in 

expanded form so it is difficult to compare with Heron.  They use the CAS’s factor() command to 

straighten this out: 

> factor(%); 

( ) b a c ( ) b a c ( )  b a c ( )  b a c

2 b
 

With this equation for the altitude, the students immediately multiply by half the base and 

verify Heron’s formula. 

The class’s next stop is the incircle, what is its radius?  Again their symbolic geometry 

system automatically gives them a formula in terms of the lengths of the sides of the triangle (fig 

3).   
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Figure 3:Automatically generated expression for the radius of the incircle 

Some discussion follows, one student notices the formula is symmetric in a,b and c.  

Another points out it is quite similar to Heron’s formula.  That’s exactly the cue Ms Johnson has 

been waiting for: she challenges them to work out how to change the area formula to get the 

radius.  Some get to work in their CAS, copying the two expressions from the symbolic geometry 

system,  Others work directly in the geometry system (figure 4).  Ms Johnson strolls through the 

aisle and gently prompts: 

“The area formula has a 4 in the denominator, and the radius has a 2, how would you 

change the 4 to a 2?  Perhaps multiply by 2?” 

“Now the area has a cba   in the numerator which is not there in the radius, how 

would you get rid of it from the numerator – that’s right divide by it.  But now the radius has this 

term in the denominator, so you’d need to divide by it again.” 

“So you’ve divided by cba   twice. What is that equivalent to?  That’s right, 

dividing by (a+b+c).” 
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Figure 4: Relation of the incircle radius to the triangle area 

They identify in this way that the expression for the radius of the incircle is twice the area 

of the triangle divided by the sum of the sides.   

How could this be proved, their teacher asks.  She suggests creating the picture of figure 

5 where the triangle is divided into three parts, and the radius of the incircle is specified. 

CA

B
Þ

c·r

2r

c

CA

B Þ
b·r

2

b

r

CA

B

Þ
a·r

2

a
r

 

Figure 5:Area decomposition proof of the incircle radius 

The class has a collective aha moment, the radius of the incircle is the altitude of each of 

the smaller triangles.  Ms. Johnson suggests getting a formula for the area of the large triangle in 

terms of the radius by adding the smaller triangles, and the class quickly obtains: 

2 2 2

ar br cr
A           (2) 

Some in the class type this directly into their CAS to solve for r, but Ms. Johnson gently 

scolds them: this is too simple an equation to use your CAS – solve it by hand please. 
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Ms. Johnson ends the session by defining the excircle [5,6] as a circle which, like the 

incircle, is tangent to all three sides of the circle, but whereas the incircle lies inside the circle, the 

excircle lies outside the circle.  A quick illustration (figure 6.) clears up any confusion. She asks 

the class to find the radius of one of the excircles.  They do this quickly in their symbolic 

geometry systems.  As the class departs, Ms. Johnson suggests they might want to think about 

how they could prove this, but we suspect they are more likely thinking about lunch. 

 

Figure 6: A triangle has 3 excircles, tangent to its sides but external to the triangle 

When the class reconvenes the next day, their teacher reminds them of their result for the 

radius of the incircle.  She splits them into three groups, one for each excircle, and asks them to 

derive an expression for their excircle in terms of the triangle area.  She instructs the groups not 

to divulge their radius.  She then asks the students not only to write down the radius of their own 

incircle, but also to guess the radii of the other groups’ circles. 

The team investigating the excircle external to BC presents their results (fig. 7) 
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Figure 7: Relation between the excircle radius and the triangle area 

Their guesses for the other two excircles are accurate: 

2 2
,

A A

a b c a b c    
       (3) 

Ms. Johnson reminds the class how they proved the incircle radius by dividing the 

triangle into three smaller triangles whose common point is the center of the incircle.  She asks 

them for suggestions about using a similar strategy with the excircle.  Despite some initial 

confusion as to how to divide a triangle using an external point, with a little guidance from Ms. 

Johnson, the class comes up with the pictures in Fig 8 
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Figure 8:Area decomposition proof of the excircle radius 
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The connection between the geometry and the algebra immediately becomes apparent, 

the area of the original triangle can be found by adding two of the smaller triangles and 

subtracting the third.   

2 2 2

ar br cr
A            (4) 

This corresponds to the term in the denominator of the radius expression being the sum of 

two lengths minus the third.  This time nobody reaches for their CAS, solving for r by hand.  Ms. 

Johnson writes the results of the class investigation on the board, a set of formulas for the radii of 

the incircle and the three excircles.   
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       (5) 

She assigns the class homework:  to come up with expressions involving radii and area, 

but without the lengths.  In other words, she says, are there any relationships between the radii 

and area which are true for all triangles? 

Unfortunately we don’t get to visit Ms. Johnson’s class to see what they came up with – 

we are off to Mr. Ford’s pre-calculus class tomorrow.  Would anyone recognize that multiplying 

all the radii would give a denominator closely related to the square of the area? 

    
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   (6) 

And hence: 
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         (7) 
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Would someone identify that inverting the radius expressions would make them 

amenable to addition?  Would anyone try adding the reciprocals of the excircle radii? 

1 2 3 0

1 1 1 1

2 2 2 2

a b c a b c a b c a b c

r r r A A A A r

        
        (8) 

Perhaps not, but I’m sure Ms. Johnson will have a set of prompts to elicit these results 

from the class when they next meet. 

Mr. Ford meanwhile, has posed his class the problem of moving a ladder round a corner.  

What, he asks, is the longest ladder that you can carry round a right angled junction between a 

corridor of width x and a second corridor of width y? [6] 

He works with them to set up the problem up in their symbolic geometry system. They 

create a pair of axes which will be one pair of walls.  They offset the other walls of the corridor 

by x and y, and constrain the length of the ladder to be L.  Dragging the foot of the ladder along 

the wall lets the class experiment with different ladder lengths (fig. 9) 
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Figure 9: Moving a ladder round a corner 

Mr. Ford assigns different values of x and y to different students and asks them to find by 

trial and error a value for L which only just clears the corner.  He writes the values in a table on 

his whiteboard, but the group is unable to guess a general form from the numbers.  He asks the 

class if there is a way to simplify the problem.  He elicits the answer he is clearly looking for: 

what if we make the two corridors the same width? 
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They decide that if the ladder only just fits, then its center will hit the corner of the wall.  

Mr. Ford suggests they create the locus of the center of the ladder.  Asked what kind of curve this 

is, the class suspects it may be a quarter circle, or part of an ellipse.  The symbolic geometry 

system shows the equation of the locus, which is quickly identified as a circle with radius L/2 

(fig. 10). 
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Figure 10: Locus of the midpoint of the ladder is a quarter circle 

What, asks Mr. Ford, is the distance of D from the origin?  The class immediately 

generates the result with their geometry system, but Mr. Ford asks how they could have worked 

this out without the computer.  With a little prompting, the class agrees that this is the diagonal of 

a square of side x, and is an easy result of Pythagoras’ Theorem. 

What then, is the length of the largest ladder that will fit round the corner?  Several of the 

students have already put the answer into their geometry system to confirm it by the time he gets 

the official response:  

2 2L x         (9) 

Next session, when they reconsider the original problem, Mr. Ford introduces the class to 

the envelope curve (figure 11).  Some experimentation convinces the class that this curve can be 

used to determine whether the ladder fits. 
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Figure 11: Envelope curve of the ladder, along with its equation 

The symbolic geometry system generates the equation of the envelope and the class is 

quick to copy this equation into their algebra system and solve for L.  They get six rather long and 

complicated solutions.  Mr. Ford points out, however, that one solution is positive real, the other 

negative real, and the others involve the symbol i, which, he reminds them, is the square root of 

negative one and not appropriate for a length. 
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Mr. Ford suggests plugging this value back in for L and they verify that with this length 

the corner lies on the envelope curve and this is the critical length of the ladder. 

He asks the class if they would expect the result to be symmetric in x and y.  The 

consensus is, yes it should be, as the maximum length of ladder which can get round a corner 

from a corridor of width x into a corridor of width y is the same as the maximum length of a 

ladder which can go in the other direction.  Mr. Ford points out that the expression as written is 

not obviously symmetric in x and y – for example, the denominator contains x and y to different 

powers.  He challenges them to simplify the expression so that its symmetry is clear. 

The first attempt of the class is to apply simplify() in their CAS, but it returns the same 

result as was fed in.  After a flurry of pencil and paper work, a symmetric answer is produced: 
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4 2 4 2

2 23 3 3 33 3y x y y x x         (10) 

Meanwhile one student, lazier than the rest, but with a better knowledge of his algebra 

system has persuaded it to simplify the expression by applying assumptions that x and y are 

positive real. 

> simplify(%) assuming x>0,y>0; 

y
/2 3( )

 + x
/2 3( )

( )
/3 2( )

 

You know what we have to do now, Mr. Ford says, to groans from the class – reconcile 

the solutions.  All but one class member is allowed to use their algebra system.  He points out that 

the power 3/2 can be regarded as the square root of a cube, so long as everything is positive: 

> expand((x^(2/3)+y^(2/3))^3); 
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Figure 12: Solution to the longest ladder problem 

Mr. Ford looks at the clock and sees there are 5 minutes left in class.  Verification, he 

says – can anyone give me a known case we can use to verify this result?  They set y = x in the 

formula and observe that it simplifies to (11). 

3
2 32
3 22 2 2 2x x x

 
  

 
      (11) 
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The class files out, and we cross the hall where Ms. Franklin is drawing a calculus 

problem on the board.  The sport of rugby, she says, is a lot like football here in America, but 

when you score a touchdown (they call it a “try”) you take the extra point kick (they call it a 

“conversion”) from a place in the field in line with the place the try was scored.  So if the try is 

scored close to the sideline, the kick is taken from somewhere close to the sideline.  If it is scored 

in the middle of the field, the kick can be taken from the middle of the field (fig. 13). 

 g 

d 

 

Figure 13: Rugby extra point kick is taken from a position on the field in line with the location of 

the touchdown.  G is the width of the goal, and d the distance from the nearest post to the 

location of the touchdown. 

My question is: if the goalposts are width g, and the try is scored distance d outside the 

left post, what is the best place to take the kick.  She asks the class to set up the problem in their 

geometry system. 

The class now discusses how to phrase the question as an optimization problem: what is 

to be optimized.   An initial suggestion that they should minimize the length of the kick is 

disposed of with the realization that the minimum distance would be found on the goal line itself, 

which would lead to a need to bend the kick to stand any chance of scoring.   

Ms. Franklin suggests maximizing the angle made by the goalposts at the point of kick, 

and the class quickly derives the angle from their geometry system (figure 14) 
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Figure 14: Angle made by the goalposts at the point of the kick 

The class agrees that assuming the kicker is able to make the distance, the best place to 

kick will be where this angle is biggest.   

We are going to be doing this problem by hand, says Ms. Franklin, but first, let’s say x 

and y are angles between 0 and 90, and I tell you that y is greater than x, what can you tell me 

about tan(y) and tan(x)?  Think about the graph of the tangent function – that’s right, 

tan(y)>tan(x).  So if I tell you I’ve found the biggest possible value for the angle in our problem, 

then that will also be the biggest possible value of tan()?  The class agrees, and is prepared to 

concede that a maximum angle will occur where the argument of the arctan is maximized.  An 

almost audible relief settles over the class as they realize they don’t need to differentiate the 

arctan.   

In due course, an answer is reached for the derivative of the argument 

2 2 2

2 2 2( )

gx gd g d

d dg x

 

 
       (12) 

(12) is solved for x to yield: 

2x d dg          (13) 



Understanding Geometry for a Changing World, Edition: 71st Yearbook, Publisher: NCTM, 

Editors: Tim Craine, Rheta Rubenstein, pp.349-365, 2009. 

 

16 

Feed (13) back into your geometry diagram, suggests Ms. Franklin, and can we see the 

locus of the best kick locations for different values of d?  Ms. Franklin asks what kind of curve 

this looks like.  Parabola and hyperbola are put forward as ideas.  The weight of popular opinion 

is behind hyperbola. Can we work out the equation of this curve, Ms. Franklin asks.  We haven’t 

established a coordinate location for our diagram yet,  I suggest we make the origin the center of 

the goalposts: 
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Figure 15:  Locus of optimal kick points is a hyperbola whose asymptote is the line Y=X 

Popular opinion is vindicated by the curve’s equation (fig. 15). Hyperbolas have 

asymptotes, says Ms. Franklin, what is the asymptote of this one?  When X and Y are large, she 

prompts, will the size of g matter? So if we ignore g, what is this equation?  The class deduces the 

asymptote is the line Y=X and place it on their diagram. 

So what practical advice, would this class give a rugby kicker?  After discussion on how 

to measure angles on a rugby field, they come up with this statement, 

 “Kick from approximately the same distance out from the goal line as the try is from the 

center of the field.” 

As the class dissolves we return to our own decade to try and draw conclusions from our 

excursion into the future. 
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Conclusion 

Reviewing the fictional classroom experiences described above, we try to identify the 

precise points of contact between the algebraic and the geometric components of the problems. 

In the incircle / excircle example, the algebraic expression for the radius of the incircle is 

observed to be closely related to the expression for the area of the triangle.  This observation 

directs the search for a geometric proof in terms of a decomposition of areas.  In its turn, the 

geometry provides context for algebraic manipulation, where the expression for the area in terms 

of the incircle radius needs to be inverted to give the radius in terms of the area.  Further, the 

geometry provides an opportunity to pose an algebraic discovery problem.  Strikingly, in this 

example the students are asked to discover geometric theorems by manipulating algebraic 

expressions.   

Algebraic symmetry is a further point of contact.  The expression for the radius of the 

incircle is symmetric in all three lengths.  This correlates to the fact that the incircle is defined 

symmetrically with respect to each side of the triangle.  An excircle on the other hand is defined 

symmetrically with respect to two of the sides but not with respect to the third.  The 

corresponding algebraic expression is symmetric with respect to two of the lengths but not the 

third. 

Symmetry also plays a role in the second example.  It is geometrically obvious that the 

longest ladder which can turn a corner from a corridor of width x into a corridor of width y is the 

same as the longest ladder which can turn a corner in the opposite direction.  The initial form of 

the algebraic result, however, is not symmetric in x and y and this provides the motivation for an 

algebraic simplification assignment.  Algebraic simplification can seem an academic exercise and 

somewhat arbitrary, but in this case, the goal of exposing the inherent symmetry of the expression 

gives a strong motivation and sense of direction to the manipulation.   
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An elegant mathematical result for a real problem is achieved through a combination of 

symbolic geometry, computer algebra and old-fashioned by-hand algebraic manipulation.  The 

symbolic geometry is essential to compute the equation of the envelope to the ladder as it moves 

round the corner.  Although the definition of the envelope curve can be grasped intuitively, the 

mathematics behind computing its equation is beyond students at this level.  Likewise, solving a 

non factoring cubic is something best left to a CAS.   

However, the student is not a passive participant in the process.  In order to drive the 

geometrical end of the problem, he needs to have a good understanding of loci, and of parametric 

and implicit equations of curves.  In order to interpret the results from the CAS, he needs to be 

familiar with complex numbers, and he needs the mathematical common sense to eliminate 

geometrically meaningless results.  Finally, he needs good algebraic manipulation skills of his 

own in order to massage the automatic results into a desired form, or to identify that different 

forms of an algebraic expression are identical. 

In the third example, geometry is initially used in a traditional role in a calculus class: 

providing the context for an optimization problem.  As the symbolic geometry software is able to 

simply derive the expression for the angle, the student is able to focus on the task at hand: using 

calculus to solve an optimization problem.  Here, the role of the technology is in isolating the 

component of a problem which is relevant to the current lesson.  The algebraic results of the 

calculus problem are fed back into the geometry software in the form of a curve.  The algebraic 

equation of the curve indicates its form and suggests the use of an asymptote as a linear 

approximation.  The asymptote in turn can be computed from the curve equation.  At this point 

the distinction between algebraic and geometric representation has become blurred;  arguably a 

desirable conclusion. 
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