PAVIATH INTEGRATED SOLUTION
PAVIATH INTEGRATED SOLUTION
Paviath

POLYTECHNIC PROJECTS & CAREER

FEATURE
MECHANISM
MACHINE ELEMENTS
CAD PROGRAM
MULTIBODY DYNAMICS
MATHEMATICAL TECHNOLOGY
FEATURE

EXPOSURE ON FEATURE AND APPLICATION OF APPLICATION TOOLS »»»»PROJECT PROGRAM


  1. COURSE DIPLOMA IN MECHANICAL ENGINEERING
  2. SYLLABUS INDUSTRIAL PROJECT
  3. COURSE CODE ME/MH/MI/AE/PG/PT

  1. SIXTH SEMESTER ME/AE/PG/PT
  2. SEVENTH SEMESTER MH/MI

MECHANISM

SAM ♦ MECHANISM DESIGN » KINEMATIC ANALYSIS » KINETO-STATICS ANALYSIS » REVERSE ENGINEERING â™¦ MECHANISM INNOVATION DATA â™¦ INPUT TO DYNAMIC & STATIC ANALYSIS

MACHINE ELEMENTS
 APM MULTIPHYSICS  PHYSICAL PROCESSES APM FGA ANALYSIS OF LIQUIDS AND GASES APM FEM  FINITE ELEMENT ANALYSIS â€ŠAPM CAM MECHANISM
APM PLAIN BEARINGS
 APM STRUCTURE 3D STRUCTURAL ANALYSIS APM STUDIO FEA PRE/POST PROCESSOR 
 APM TRANS DESIGNING TRANSMISSIONS â€ŠAPM SCREW SLIP, BALL & PLANETARY SCREW APM EMA ANALYSIS ELECTROMAGNETIC â€ŠAPM BEAR DESIGNING ROLLING BEARING â€ŠAPM DRIVE  MOTION ARBITRARY STRUCTURE â€ŠAPM GRAPH GRAPHICS
 PARAMETRIC DRAWING

MACHINE ELEMENTSPDM ANALYTICALSTRUCTURAL FINITE ELEMENT LITERATURE

CAD PROGRAM
 KOMPAS-3D
KOMPAS-GRAPHIC
 3D-MODEL RECOGNITION SYSTEM STANDARD PARTS
BOM WIZARD UNWRAP 
 STEEL STRUCTURES 3D. APM FEM â€ŠPIPELINES 3D ANIMATION E CAD–KOMPAS-3D CONVERTER
 RENDERING APPLICATION TRACEPARTSONLINE
MATERIALS LIBRARY
 ANALYSIS OF KINEMATIC & DYNAMIC KOMPAS-MACRO
CABLE 3D
 MOULD AND DIE DIMENSIONAL CHAINCALCULATOR
MULTIBODY DYNAMICS
 UM AUTOMOTIVE UM TRAIN UM LOCO UM LOCOMOTIVE UM FREIGHT WAGON CONTACT ADD ON UM TRACKED VEHICLE UM FEM ANALYSIS
 UM EXPERIMENTS UM BASE UM SUBSYSTEMS UM DRIVELINE UM MAGLEV UM TOOLS UM CADUM CONTROL  UM MATLAB
 UM BALLAST UM 3D CONTACT UM RCF UM WHEEL/RAIL UM MONORAIL UM LOCO MODEL BRYANSK STATE TECHNICAL UNIVERSITY 
MATHEMATICAL TECHNOLOGY
 SALTIRE MATHS ILLUSTRATIONS â€ŠSALTIRE GEOMETRY EXPRESSIONS SALTIRE MECHANICAL EXPRESSIONS SALTIRE ANALYTIX SALTIRE ANALYTIX CAMS SALTIRE KNOWLEDGE BASE
ENGINEERING PROFESSIONAL  NAGANAKULAM KNOWLEDGE CENTRETRAINING FEATURE 

♦ â€ŠISO/DIN/GOST/BIS STANDARD

♦ ACADEMIC INPUT â†’ INDUSTRY OUTPUT

♦ TECHNICAL DATA Â» ENCYCLOPEDIA

♦ ACADEMIC TEXT BOOKS & TEST PAPERS

♦ â€Šâ†“ GAP â†“  ACADEMIC VS INDUSTRY

♦ CONCEPT » BASICS » DATABASE

♦ PRODUCTS USED INDUSTRIES

♦ REVERSING Â« PRODUCT « SCRAP 

♦ PRODUCT SPECIFICATION ?
♦ KINEMATIC & KINETOSTATIC FACTORS
♦ ANALYTICAL PARAMETER TO OPTIMIZE
♦ RESEARCH DATA Â» PUBLICATION

DIPLOMA PROJECT
PROJECT AIM
PROJECT OBJECTIVES
GUIDANCE
OUTCOME
REFERENCE
SOFTWARE
DIPLOMA PROJECT
 COURSE SYLLABUS COURSE CODE SIXTH SEMESTER SEVENTH SEMESTER
 DIPLOMA IN MECHANICAL ENGINEERING INDUSTRIAL PROJECT ME/MH/MI/AE/PG/PT ME/AE/PG/PT MH/MI
PROJECT AIM

TO SOLVE THE PROBLEMS INVOLVING DRAWINGS, DESIGNS, MANUFACTURING, INSTALLATION, TESTING AND MAINTENANCE OF MACHINES. IN ORDER TO CULTIVATE THE SYSTEMATIC METHODOLOGY FOR PROBLEM SOLVING USING ACQUIRED TECHNICAL KNOWLEDGE & SKILLS, AND TO ENHANCE THE GENERIC SKILLS & PROFESSIONAL SKILLS.

PROJECT OBJECTIVES

1. IDENTIFY, ANALYZE & DEFINE THE PROBLEM.
2. GENERATE ALTERNATIVE SOLUTIONS TO THE PROBLEM IDENTIFIED.
3. COMPARE & SELECT FEASIBLE SOLUTIONS FROM ALTERNATIVES GENERATED.
4. DESIGN, DEVELOP, MANUFACTURE & OPERATE EQUIPMENT/PROGRAM.
5. ACQUIRE HIGHER-LEVEL TECHNICAL KNOWLEDGE BY STUDYING RECENT DEVELOPMENT IN MECHANICAL ENGINEERING FIELD.
6. COMPARE MACHINES/DEVICES/APPARATUS FOR PERFORMANCE PRACTICES.
7. WORK EFFECTIVELY IN A TEAM.

GUIDANCE

PART A-PROJECT
A BATCH OF MAXIMUM 4 STUDENTS WILL SELECT A PROBLEM AND THEN PLAN, ORGANIZE & EXECUTE THE PROJECT WORK OF SOLVING THE PROBLEM IN A SPECIFIED DURATION. STUDENT IS EXPECTED TO APPLY THE KNOWLEDGE & SKILLS ACQUIRED.
BATCH MAY SELECT ANY ONE PROBLEM/PROJECT WORK FROM FOLLOWING CATEGORIES.
A) FABRICATION OF SMALL MACHINE / DEVICES/ TEST RIGS/ MATERIAL HANDLING DEVICES/ JIG & FIXTURES/ DEMONSTRATION MODELS, ETC. REPORT INVOLVING ASPECTS OF DRAWING, PROCESS SHEETS, COSTING, INSTALLATION, COMMISSIONING & TESTING SHOULD BE PREPARED AND SUBMITTED.
B) DESIGN & FABRICATION OF MECHANISMS, MACHINES, DEVICES, ETC. REPORT INVOLVING ASPECTS OF DESIGNING & FABRICATING SHOULD BE PREPARED & SUBMITTED .
C) DEVELOPMENT OF COMPUTER PROGRAM FOR DESIGNING AND /OR DRAWING OF MACHINE COMPONENTS, SIMULATION OF MOVEMENT & OPERATION, 3D MODELING, PICK & PLACE ROBOTS ETC.
D) INDUSTRY SPONSORED PROJECTS- PROJECT RELATED WITH SOLVING THE PROBLEMS IDENTIFIED BY INDUSTRY SHOULD BE SELECTED. ONE PERSON / ENGINEER FROM INDUSTRY IS EXPECTED TO WORK AS CO- GUIDE ALONG WITH GUIDE FROM INSTITUTION.
E) LITERATURE SURVEY BASED PROJECTS: PROJECT RELATED WITH COLLECTION TABULATION, CLASSIFICATION, ANALYSIS & PRESENTATION OF THE INFORMATION. TOPIC SELECTED MUST BE RELATED WITH LATEST TECHNOLOGICAL DEVELOPMENTS IN MECHANICAL OR MECHATRONICS FIELD, AND SHOULD NOT BE A PART OF DIPLOMA CURRICULUM. REPORT SHOULD BE OF MIN 60 PAGES.

F) INVESTIGATIVE PROJECTS- PROJECT RELATED WITH INVESTIGATIONS OF CAUSES FOR CHANGE IN PERFORMANCE OR STRUCTURE
OF MACHINE OR COMPONENT UNDER DIFFERENT CONSTRAINTS THROUGH EXPERIMENTATION AND DATA ANALYSIS.
G) MAINTENANCE BASED PROJECTS: THE INSTITUTE MAY HAVE SOME MACHINE/ EQUIPMENT/ SYSTEM WHICH ARE LYING IDLE DUE TO LACK OF MAINTENANCE. STUDENTS MAY SELECT THE SPECIFIC MACHINES/EQUIPMENT/SYSTEM. OVERHAUL IT, REPAIR IT AND BRING IT TO WORKING CONDITION. THE SYSTEMATIC PROCEDURE FOR MAINTENANCE TO BE FOLLOWED AND THE REPORT OF THE ACTIVITY ARE SUBMITTED.
H) INDUSTRIAL ENGINEERING BASED PROJECT: PROJECT BASED ON WORK STUDY, METHOD STUDY, METHODS IMPROVEMENT, LEADING TO PRODUCTIVITY IMPROVEMENT, DATA COLLECTION, DATA ANALYSIS AND DATA INTERPRETATION BE UNDERTAKEN.
I) LOW COST AUTOMATION PROJECTS: PROJECT BASED ON HYDRAULIC/PNEUMATIC CIRCUITS RESULTING INTO LOW COST AUTOMATED EQUIPMENT USEFUL IN THE IDENTIFIED AREAS.
J) INNOVATIVE/ CREATIVE PROJECTS – PROJECTS RELATED WITH DESIGN, DEVELOP & IMPLEMENTATION OF NEW CONCEPT FOR SOME IDENTIFIED USEFUL ACTIVITY USING PLC, ROBOTICS, NON-CONVENTIONAL ENERGY SOURCES, CIM , MECHATRONICS, ETC.
K) ENVIRONMENTAL MANAGEMENT SYSTEMS PROJECTS: PROJECTS RELATED WITH POLLUTION CONTROL, SOLID WASTE MANAGEMENT, LIQUID WASTE MANAGEMENT, INDUSTRIAL HYGIENE, ETC, WORKING MODEL OR CASE STUDY SHOULD BE UNDERTAKEN.
L) MARKET RESEARCH/ SURVEY BASED PROJECTS: PROJECTED RELATED WITH IDENTIFICATION OF EXTENT OF DEMAND, SALES
FORECASTING, COMPARATIVE STUDY OF MARKETING STRATEGIES, COMPARATIVE STUDY OF CHANNELS OF DISTRIBUTION, IMPACT OF VARIABLES ON SALES VOLUME, ETC. THE PROJECT INVOLVES EXTENSIVE SURVEY & MARKET RESEARCH ACTIVITIES INFORMATION TO BE COLLECTED THROUGH VARIOUS MECHANISMS/TOOLS & REPORT IS PREPARED.
M) PROJECT BASED ON USE OF APPROPRIATE TECHNOLOGY PARTICULARLY BENEFITING RURAL SOCIETY OR ECONOMICALLY WEAKER SECTION.
N) PROJECT CAN BE SELECTED OTHER THAN THE AREA SPECIFIED ABOVE. PROJECT SHOULD PROVIDE VIABLE AND FEASIBLE SOLUTION TO THE PROBLEM IDENTIFIED. REPORT SHOULD BE OF MIN 50 PAGES.

OUTCOME

INTELLECTUAL SKILLS
1. DESIGN THE RELATED MACHINE COMPONENTS & MECHANISM.
2. CONVERT INNOVATIVE OR CREATIVE IDEA INTO REALITY.
3. UNDERSTAND & INTERPRET DRAWINGS & MECHANISMS
4. SELECT THE VIABLE, FEASIBLE & OPTIMUM ALTERNATIVE FROM DIFFERENT ALTERNATIVES.
MOTORS SKILLS
1. USE OF SKILLS LEARNT IN WORKSHOP PRACTICAL.
2. ASSEMBLE PARTS OR COMPONENTS TO FORM MACHINE OR MECHANISMS.
3. CLASSIFY & ANALYZE THE INFORMATION COLLECTED.
4. IMPLEMENT THE SOLUTION OF PROBLEM EFFECTIVELY.

REFERENCE

KARL SMITH PROJECT MANAGEMENT &
TEAM WORK TATA- MC GRAW HILL
CLIFFORED GRAY &
ERIK LASSON PROJECT MANAGEMENT TATA- MC GRAW HILL

1. INVENTION INTELLIGENCE MAGAZINE
2. POPULAR MECHANICS JOURNALS/ MAGAZINES

SOFTWARE

♦ APM WINMACHINE CAE/CAD/STRUCTURAL ANALYSIS/FEA/MACHINE ELEMENTS/PDM/DB â™¦ VARICAD 2D/3D/PDM/BOM â™¦ KOMPAS 3D  2D/3D/PDM/BOM â™¦ SAM MECHANISM DESIGN â™¦ SALTIRE SOFTWARE MATHEMATICAL TECHNOLOGY â™¦ UNIVERSAL MECHANISM MULTIBODY DYNAMICS.

» FEATURE ON APPLICATION DATA WILL BE TAKEN FROM APPLICATION TOOLS ON EITHER SIDE OF ACADEMIC AND INDUSTRY Â«

MECHANISM DESIGN CAE

GENERAL
MODELLING
ANALYSIS RESULTS
INPUT MOTION
OPTIMIZATION
DESIGN WIZARDS
REFERENCE
GENERAL

General
Summary keywords

  • planar mechanisms
  • design and simulation
  • CAD interface, dxf import
  • synthesis
  • video export
  • documentation
  • 5 languages
  • support by engineers

SAM can also animate the mechanism motion.. As a further aid for the designer the path and velocity hodograph of any number of moving points can be plotted. Also, a complete project documentation (ASCII-format) can be automatically generated.

CAD interface

The DXF import/export facility lets you export your conceptual mechanism design to any CAD program to work out the details and it lets you import CAD data to easily set-up the mechanism in SAM or to perform animation of the final mechanism.

SAM (Synthesis and Analysis of Mechanisms) is an interactive PC-software package for the design, analysis (motion and force) and optimization of arbitrary planar mechanisms. Mechanisms can either be generated via the design wizards or they can be assembled from basic components including beams, sliders, gears, belts, springs, dampers and friction elements. SAM integrates pre-processing, numerical analysis and post processing, such as animation and xy-plots, in an easy to-use environment offering pull-down menus, mouse support and help facilities.

The mathematical foundation of the analysis kernel, which is inspired by the well-known finite element approach, offers a large number of features and overcomes many of the problems of traditional mechanism programs. Open loop, closed loop, multiple loop and even complex planetary mechanisms can equally well be analyzed due to the finite element formulation. Even the most complex mechanisms, including planetary gear trains, can be modeled within minutes 

SAM is available in English, German, Spanish, French, Dutch and Chinese.

Post-processing

The analysis results can be displayed either in tabular or graphical form. The tabular listing can be viewed on the screen, send to a printer or stored in a readable formatted list file. The x/y plot option allows to plot any variable against time or any other variable. An unlimited number of functions can be combined into one x/y plot with optionally two different scalings to allow proper multiple display of variables with different amplitude ranges. It is possible to output selected data to an external file (ASCII format) for customized post-processing.


SAM GENERAL
MODELLING

Modelling

SAM is equipped with a large library of basic elements, including:

  • beam, slider
  • belt, gear
  • sensor
  • spring, damper and friction element (both translational and rotational)
  • non-linear spring

which allows the analysis of a huge variety of mechanisms. The unique mathematical foundation of the program offers a large number of features and overcomes many of the problems of traditional mechanism programs. Open loop, closed loop and even multiple loop mechanisms are treated in the same way and even the most complex mechanisms, including planetary gear trains, can be modeled within minutes.

CAD interface
The DXF import/export facility lets you export your conceptual mechanism design to any CAD program to work out the details and it lets you import CAD data to easily set-up the mechanism in SAM or to perform animation of the final mechanism. Imported CAD parts may be used as illustrative parts of the mechanism.

SAM MODELLING
ANALYSIS RESULTS

Analysis Results

Keywords

  • positions, angles, length
  • derivatives
  • force and torque
  • power
  • bearing forces
  • path, hodograph
  • user expressions
  • export

Once the mechanism has been constructed and the inputs have been defined any of the following kinematic quantities can be calculated (all relative or absolute):

  • nodal position, displacement, velocity, acceleration
  • angles, angular velocity and acceleration

Furthermore SAM can perform force-analysis, thus enabling the calculation of:

  • driving torque (force)
  • reaction forces in bearings
  • internal forces in elements
  • required or transmitted power

User defined results (SAM Professional)
A sophisticated formula parser offers the possibility to combine simulation results in multiple ways to
derive user defined results. User defined results may also be displayed as curves in the graph.

SAM ANALYSIS RESULT
SAM SOFTWARE
INPUT MOTION

Input Motion

Keywords

  • user table
  • multiple actuators
  • linear actuator

SAM allows the definition of multiple inputs, which can either be defined in terms of absolute displacements or in terms of elemental change of shape to model relative inputs (e.g. elongation of a hydraulic cylinder or relative rotation of a robot elbow). Each of the inputs can be defined independently. Various frequently used input motion laws, such as:

  • constant velocity
  • polynomial
  • cyclical motion
  • 2.order velocity profile
  • cubic splines

are available and can be combined to form any desired input diagram. Inputs can also be read from an external ASCII file or defined via a table to enable the definition of arbitrary motions. This latter feature is especially handy for the modeling of non-standard cam profiles.

SAM INPUT MOTION
OPTIMIZATION

Optimization

Keywords

  • all geometry
  • single function
  • multi parameter
  • constrained optimization
  • function or path
  • mass, stiffness
  • position of mass
  • peak, RMS, average

The optimization module of SAM Professional offers constrained single-function multi-parameter optimization based on a mix of evolutionary algorithms and Simplex techniques. Constraints are dealt with by treating each
violation of a constraint as a penalty that is added to the original cost function. The software offers the
option to define own results from the standard set of results via an advanced formula parser. This option
is also used to define and add penalties.

Taking the initial design/topology as a starting point one can for example further improve the quality in
which the trajectory of a coupler point equals the target trajectory by changing the geometry of the
mechanism within pre-defined ranges. Or one can minimize the peak or RMS value of the driving torque
of a mechanism by adding a compensating mass and let SAM determine the optimal value of the mass
and its position within the allowable range. Just as in the case of the trajectory optimization one can
also specify a reference function and minimize the difference between the actual and the reference
function. When designing for example fitness equipment one is generally seeking a predefined force as
function of displacement.

The goal for optimization can be the minimization or maximization of a variety of properties (peak, RMS, average, ...) or the difference between the actual and the target behaviour of a mechanism, such as:

  • Trajectory of a node (with of without prescribed timing)
  • Any motion or force quantity (as function of time or another quantity)

SAM seeks the optimum by modifying the following properties within user-defined ranges:

  • geometry of mechanism
  • element properties, such mass, spring constant, transmission ratio, ...

The optimization process in SAM is based on a two step approach, consisting of:

  • Exploration of the design space
  • Optimization of a specific solution

SAM OPTIMIZATION
SAM SOFTWARE

First, the entire parameter space is explored globally using a combination of a pure Monte-Carlo technique and a so-called Evolutionary Algorithm, which is a optimization technique derived from Genetic Optimization. The top list of such a global exploration are shown in the Explore list box, which displays the value of the optimization function and the corresponding parameters. The individual with the best property is listed at the top.

Next, the designer can select one of the results from the Explore window and start a local optimization. This local search can be either based on a Simplex technique or on a Evolutionary Algorithm with a smaller parameter range centered around the selected solution.

The combination of a global exploration strategy and a local optimization strategy - with the designer in the loop for selecting the mechanism that is further optimized - is believed to give the best trade-off between speed and coverage of the design space. Alternatively, options can also be set in such a way, that a fully automated optimization is performed.

DESIGN WIZARDS

Design Wizards

Keywords

  • parametric
  • 4-bar mechanisms
  • exact linear guiding
  • approximate linear guiding
  • Watt, Evans
  • Robberts
  • Chebyshev
  • Hoecken

SAM offers a set of design wizards which will help you to synthesize mechanisms for specific tasks, such as:

In case these design wizards do not provide the solution to the specific design problem, the user has to rely on his experience, previous design, handbooks or trial&error to invent the mechanism, which can then be modelled and analyzed in SAM.

SAM DESIGN WIZARD
REFERENCE
MECHANISM

SYLLABUS

  • STRENGTH OF MATERIALS
  • KINEMATICS OF MACHINERY
  • MECHANICS OF MACHINES

  • KINEMATICS AND DYNAMICS
  • MACHINE COMPONENTS DESIGN
  • KINEMATICS AND DYNAMICS OF MACHINES
  • DYNAMICS OF MACHINES

BOOKS

  • konstruktivegetriebelehre
  • Neil Sclater
  • WILEY
  • DMAGL
  • I. I. Artobolevsky
  • SAM REFERENCE
  • Mechanism Design: Analysis and Synthesis
  • Planetenmischer mit dynamisch getriebenen Mischarmen

MACHINE ELEMENTS AND ANALYSIS CAE

MULTIPHYSICS
WINMACHINE
STRUCT
MECHANIC
FEM
APM EMA
APM FGA
APM ECA
CIVIL
MULTIPHYSICS

APM Multiphysics 

APM Multiphysics allows you to simulate a series of physical processes - heat transfer, electromagnetic field, for liquid and gas, as well as to design mechanical equipment and its elements (details of general purpose machines) using engineering techniques to perform designing and verifying calculations connected nodes, to analyze the stress-strain state, as well as analysis of the stability and natural frequencies (using FEM), three-dimensional objects of any complexity for arbitrary securing, static or dynamic loading, create documentation in accordance with ESKD, used in the design of a database of standard products and materials.

WINMACHINE

APM WinMachine 

WinMachine the APM - the CAE computer-aided calculation and design of mechanical equipment and structures in the field of engineering, designed to meet the latest advances in computational mathematics, the field of numerical methods and programming, as well as theoretical and experimental engineering solutions. This system is fully adapted to the requirements of state standards and regulations relating to the registration of a design documentation, as well as to the calculation algorithms.

STRUCT

APM StructFEM 

APM StructFEM allows the analysis of stress-strain state (using FEM) of three-dimensional objects of any complexity for arbitrary securing, static or dynamic loading of 64-bit operating systems without formal restrictions degrees of freedom to carry out the calculation of sustainability and natural frequencies, and thermal analysis , perform calculations of welded, bolted, riveted joints, create documentation in accordance with ESKD, used in the design of a database of standard products and materials.

MECHANIC

APM MECHANIC

APM Mechanic allows you to design machine parts and mechanisms using engineering techniques (mechanical rotation transmission shafts and axles, bearings and friction, elastic elements of machines, transfer of translational motion, cams), as well as to designing and verifying calculations connected nodes (bolt, rivet , welded), bodies of rotation of the compounds (interference fit, keyway, other ...); after settlements possible to create documentation in accordance ESKD and using databases of standard products and materials..

FEM

APM FEM

The system of the strength finite element analysis APM FEM for KOMPAS-3D  is designed to perform rapid calculations of solid objects in the environment of KOMPAS-3D , and then visualize the results. The composition ofAPM FEM includes tools of preparation of parts and assemblies to the calculation, the boundary conditions and loads, as well as built-in generator of finite element mesh and postprocessor. This feature set allows you to simulate a solid object and complex computational model to analyze the behavior under different treatments in terms of statics, eigen frequencies, stability and thermal loading.

APM EMA

APM EMA 

APM ElectroMagnetic Analysis allows you to model and perform various kinds of analysis of electromagnetic field characteristics for electrical equipment and communications equipment. Calculations are performed for the steady and unsteady regimes. The functionality of the system APM EMA to address the equations of electrodynamics systems include a wide range of tools for the preparation of models, which are the subject of analysis. The main types of calculations are: electrostatic calculation, the calculation of the field of direct currents, magnetostatic calculation, electromagnetic transient calculation, the high-frequency modal analysis.

APM FGA

APM FGA 

APM FGA allows finite element analysis of flows of liquids and gases to produce spatial kinematic, dynamic and energy characteristics, comprehensively describing their behavior with different boundary conditions and physical properties.



APM ECA

APM ECA 

APM Electrical Circuit Analysis allows you to simulate circuits of arbitrary topology, consisting of different types of two-poles: passive - resistor, capacitor, inductor; active - DC power, DC power, AC power (harmonic) current, the AC (harmonic) voltage. For the calculation, use the following types of analysis: static, harmonic analysis, transient analysis. Calculations are performed for the stationary, steady-state harmonic and transient regimes.

CIVIL

APM Civil Engineering
 Civil Engineering the APM - the CAE computer-aided design of construction of civil and industrial use. This system is fully adapted to the requirements of state standards and building codes and regulations relating to the registration of a design documentation, as well as to the calculation algorithms. Comprehensive features to create models of designs, perform the necessary calculations and visualization of the results can reduce design time and reduce the consumption of materials of construction of the object, as well as reduce the cost of design work and construction in general.

MULTIBODY DYNAMICS CAE

UNIVERSAL MECHANISM
UM AUTOMOTIVE
UM LOCO
UM TRAIN
TRACKED VEHICLE
UM FEM
UM CAD
UM EXPERIMENT
UM CONTROL
UM SUB SYSTEM
UM DURABILITY
UM BALLAST
UM 3D CONTACT
UMLINK
UNIVERSAL MECHANISM

Universal Mechanism consists of different modules and tools and may be delivered in the different configurations. The minimal, so called "base configuration" (UM Base), is a ready tool which allows carrying out dynamic analysis of mechanical systems. Functionality of the base configuration can be widened with the help of additional modules.

 UM Automotive UM Loco UM Train UM Tracked Vehicle UM FEM UM CAD Interfaces
 UM Experiments UM Control UM Subsystems UM Durability UM Ballast UM 3D Contact
UM AUTOMOTIVE

UM Automotive includes mathematical models of tires, program tools for description of road plan and road excitations. UM Automotive includes as well set of typical maneuvers, suspensions, steering systems and elements of trasmission. Module gives user the possibility to estimate dynamical behavior of the vehicle, including forces in the suspension force elements, safety and "road holding" factors, etc...

UM LOCO

The program package includes module UM Loco intended for simulation of railway vehicle dynamics in both straight and curve railroad tracks. The simulation is performed in time domain by means of numeric integration of differential or differential-algebraic equations of motion. UM Loco allows the user to create fully parameterized models of vehicles...

UM TRAIN

UM Train module automates the process of train model creation and the analysis of obtained results. The module allows computing the longitudinal dynamics of train in braking, traction and idling modes on a railway track of any configuration...

TRACKED VEHICLE

The UM Tracked Vehicle module of UM software has been developed for an automatic generation of models of tracked vehicles and analysis of their dynamics...

UM FEM

This module let the user a possibility to introduce into a mechanical system deformable bodies undergo large reference displacement but small deformation. Such an approach makes more exact results in comparison with multibody simulation and could be very useful in some cases. This approach could be useful for research of vibration of car body and carriage underframe during the motion of railway vehicle subject to influence from railway track irregularities and a power generating set..

UM CAD

Modern approach to design of machines and mechanisms assumes creating 3D models with the help of one of the computer-aided design (CAD) software with parallel strength and dynamics analysis. To simplify importing such models from CAD software to Universal Mechanism we developed tools for direct data import from CAD software to Universal Mechanism. Such import tools are collected within the UM CAD Interfaces module. The current UM version supports data import from Autodesk Inventor, SolidWorks, Unigraphics NX, KOMPAS and Pro/ENGINEER...

UM EXPERIMENT

It is often required in engineering practice to carry out series of numerical experiments, for example to analyze dynamical behavior and sensitivity of mechanical system or to find out optimal parameters of the system. UM Experiments gives a user a possibility to run series of numerical experiments automatically...

UM CONTROL

Universal Mechanism includes UM Control module, which provides interface between Universal Mechanism and Matlab/Simulink. The user can compile his/her own Matlab/Simulink model and attach it into the Universal Mechanism. Matlab/Simulink interface gives the user a possibility to include unlimited number of Matlab/Simulink libraries and interactively turn on/off interfaces...

UM SUB SYSTEM

Subsystem technique is a basis of modeling objects with large number of degrees of freedom and creation of database of typical design elements for modeling technical systems. By using this method an object is represented as a tree of subsystems, which are linked by means of force elements and constraints. Any object previously created by the user can be a subsystem. This object may contain any tree of subsystems...

UM DURABILITY

The fatigue analysis starts with the dynamical hybrid model in Universal Mechanism. The flexibility characteristics of the structural parts are incorporated into UM model using a modal formulation based upon component mode synthesis. Basically, this method represents the part,s flexibility using a modal basis, which is optimized to account for constraint and force locations. The mode shape displacements and stresses are calculated using the finite element software. The UM Durability module combines the stress time history information generated during series of numerical experiments in UM and the material fatigue strength characteristics to generate the predicted life distribution in the part...

UM BALLAST

This module allows including in a UM model a planar granular media, which is a set of particles (rigid polygons and circles). The particles interact with each other by contact forces. Simple models of contact forces are used in the module. Each force consists of two components. The first component is a linear viscoelastic normal force. Another one is a dry friction force with two modes: sliding and sticking...

UM 3D CONTACT

This module allows simulating of contact interaction of bodies by contact manifolds (graphical objects). The realized contact algorithm is based on the simulation of interaction of arbitrary convex polyhedrons. The set of supplied primitives includes the following types: box, cylinder, cone, ellipsoid, and polyhedron

UMLINK

MATHEMATICAL TECHNOLOGY

CAREER PROGRAM - MECHANICAL & APPLICATION - » MECHANISM Â» MACHINE ELEMENTS Â» STRUCTURAL ANALYSIS Â» MULTIBODY DYNAMICS Â» Â» 

info@paviathintegratedsolution.com www.paviathintegratedsolution.com